Innovating a Green Real Deal ()

>> mehr lesen

News at a glance ()

>> mehr lesen

Trump clamps down on fetal tissue research ()

>> mehr lesen

Draft bill reignites U.S. debate over patenting human genes ()

>> mehr lesen

Close-range remote sensing of Saturns rings during Cassinis ring-grazing orbits and Grand Finale ()
Saturn’s rings are an accessible exemplar of an astrophysical disk, tracing the Saturn system’s dynamical processes and history. We present close-range remote-sensing observations of the main rings from the Cassini spacecraft. We find detailed sculpting of the rings by embedded masses, and banded texture belts throughout the rings. Saturn-orbiting streams of material impact the F ring. There are fine-scaled correlations among optical depth, spectral properties, and temperature in the B ring, but anticorrelations within strong density waves in the A ring. There is no spectral distinction between plateaux and the rest of the C ring, whereas the region outward of the Keeler gap is spectrally distinct from nearby regions. These results likely indicate that radial stratification of particle physical properties, rather than compositional differences, is responsible for producing these ring structures.
>> mehr lesen

Mountain high: oldest clear signs of pot use ()

>> mehr lesen

Satellites see hurricane winds despite military signal tweaks ()

>> mehr lesen

X-ray telescope keeps Russia's space science hopes alive ()

>> mehr lesen

Experimental drug holds off type 1 diabetes ()

>> mehr lesen

The confession ()

>> mehr lesen

The origin of Saturn's rings and moons ()

>> mehr lesen

Gut microbes metabolize Parkinson's disease drug ()

>> mehr lesen

Catching structural transitions in liquids ()

>> mehr lesen

Scaling up nanoporous graphene membranes ()

>> mehr lesen

A marine chemical defense partnership ()

>> mehr lesen

Science fiction: Fictitious experiments in patents ()

>> mehr lesen

Mind tricks ()

>> mehr lesen

Much ado about method ()

>> mehr lesen

Inclusive chimpanzee conservation ()

>> mehr lesen

Inclusive chimpanzee conservation--Response ()

>> mehr lesen

Romanian carnivores at a crossroads ()

>> mehr lesen

How to make almonds palatable ()

>> mehr lesen

Supported graphene-based membranes ()

>> mehr lesen

ATP production under lockdown ()

>> mehr lesen

Three's a charm for iron and CO2 ()

>> mehr lesen

Dynamic metasurfaces ()

>> mehr lesen

Longer ripples make better memories ()

>> mehr lesen

Filming the airways ()

>> mehr lesen

Ancient usage of cannabis ()

>> mehr lesen

A gut-fat axis ()

>> mehr lesen

Cassini's last look at Saturn's rings ()

>> mehr lesen

The dope on L-dopa metabolism ()

>> mehr lesen

A little help from a friend ()

>> mehr lesen

Structural switch for fast switching ()

>> mehr lesen

Driving strontium titanate ferroelectric ()

>> mehr lesen

Surviving energetic stress with mTORC2 ()

>> mehr lesen

Sensing the stretch ()

>> mehr lesen

The economic cost of an epidemic ()

>> mehr lesen

Gene expression can point to disease risk ()

>> mehr lesen

Simple rules generate complex shapes ()

>> mehr lesen

Same masses, different sizes ()

>> mehr lesen

Fatty liver--too much of a bad thing? ()

>> mehr lesen

A charmed violation ()

>> mehr lesen

Cassini-Huygens exploration of the Saturn system: 13 years of discovery ()
The Cassini-Huygens mission to Saturn provided a close-up study of the gas giant planet, as well as its rings, moons, and magnetosphere. The Cassini spacecraft arrived at Saturn in 2004, dropped the Huygens probe to study the atmosphere and surface of Saturn’s planet-sized moon Titan, and orbited Saturn for the next 13 years. In 2017, when it was running low on fuel, Cassini was intentionally vaporized in Saturn’s atmosphere to protect the ocean moons, Enceladus and Titan, where it had discovered habitats potentially suitable for life. Mission findings include Enceladus’ south polar geysers, the source of Saturn’s E ring; Titan’s methane cycle, including rain that creates hydrocarbon lakes; dynamic rings containing ice, silicates, and organics; and Saturn’s differential rotation. This Review discusses highlights of Cassini’s investigations, including the mission’s final year.
>> mehr lesen

Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration ()
Nanoporous two-dimensional materials are attractive for ionic and molecular nanofiltration but limited by insufficient mechanical strength over large areas. We report a large-area graphene-nanomesh/single-walled carbon nanotube (GNM/SWNT) hybrid membrane with excellent mechanical strength while fully capturing the merit of atomically thin membranes. The monolayer GNM features high-density, subnanometer pores for efficient transport of water molecules while blocking solute ions or molecules to enable size-selective separation. The SWNT network physically separates the GNM into microsized islands and acts as the microscopic framework to support the GNM, thus ensuring the structural integrity of the atomically thin GNM. The resulting GNM/SWNT membranes show high water permeance and a high rejection ratio for salt ions or organic molecules, and they retain stable separation performance in tubular modules.
>> mehr lesen

Femtosecond x-ray diffraction reveals a liquid-liquid phase transition in phase-change materials ()
In phase-change memory devices, a material is cycled between glassy and crystalline states. The highly temperature-dependent kinetics of its crystallization process enables application in memory technology, but the transition has not been resolved on an atomic scale. Using femtosecond x-ray diffraction and ab initio computer simulations, we determined the time-dependent pair-correlation function of phase-change materials throughout the melt-quenching and crystallization process. We found a liquid–liquid phase transition in the phase-change materials Ag4In3Sb67Te26 and Ge15Sb85 at 660 and 610 kelvin, respectively. The transition is predominantly caused by the onset of Peierls distortions, the amplitude of which correlates with an increase of the apparent activation energy of diffusivity. This reveals a relationship between atomic structure and kinetics, enabling a systematic optimization of the memory-switching kinetics.
>> mehr lesen

Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1 ()
The mitochondrial adenosine triphosphate (ATP) synthase produces most of the ATP required by mammalian cells. We isolated porcine tetrameric ATP synthase and solved its structure at 6.2-angstrom resolution using a single-particle cryo–electron microscopy method. Two classical V-shaped ATP synthase dimers lie antiparallel to each other to form an H-shaped ATP synthase tetramer, as viewed from the matrix. ATP synthase inhibitory factor subunit 1 (IF1) is a well-known in vivo inhibitor of mammalian ATP synthase at low pH. Two IF1 dimers link two ATP synthase dimers, which is consistent with the ATP synthase tetramer adopting an inhibited state. Within the tetramer, we refined structures of intact ATP synthase in two different rotational conformations at 3.34- and 3.45-Å resolution.
>> mehr lesen

Metastable ferroelectricity in optically strained SrTiO3 ()
Fluctuating orders in solids are generally considered high-temperature precursors of broken symmetry phases. However, in some cases, these fluctuations persist to zero temperature and prevent the emergence of long-range order. Strontium titanate (SrTiO3) is a quantum paraelectric in which dipolar fluctuations grow upon cooling, although a long-range ferroelectric order never sets in. Here, we show that optical excitation of lattice vibrations can induce polar order. This metastable polar phase, observed up to temperatures exceeding 290 kelvin, persists for hours after the optical pump is interrupted. Furthermore, hardening of a low-frequency vibration points to a photoinduced ferroelectric phase transition, with a spatial domain distribution suggestive of a photoflexoelectric coupling.
>> mehr lesen

Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3 ()
"Hidden phases" are metastable collective states of matter that are typically not accessible on equilibrium phase diagrams. These phases can host exotic properties in otherwise conventional materials and hence may enable novel functionality and applications, but their discovery and access are still in early stages. Using intense terahertz electric field excitation, we found that an ultrafast phase transition into a hidden ferroelectric phase can be dynamically induced in quantum paraelectric strontium titanate (SrTiO3). The induced lowering in crystal symmetry yields substantial changes in the phonon excitation spectra. Our results demonstrate collective coherent control over material structure, in which a single-cycle field drives ions along the microscopic pathway leading directly to their locations in a new crystalline phase on an ultrafast time scale.
>> mehr lesen

Long-duration hippocampal sharp wave ripples improve memory ()
Hippocampal sharp wave ripples (SPW-Rs) have been hypothesized as a mechanism for memory consolidation and action planning. The duration of ripples shows a skewed distribution with a minority of long-duration events. We discovered that long-duration ripples are increased in situations demanding memory in rats. Prolongation of spontaneously occurring ripples by optogenetic stimulation, but not randomly induced ripples, increased memory during maze learning. The neuronal content of randomly induced ripples was similar to short-duration spontaneous ripples and contained little spatial information. The spike content of the optogenetically prolonged ripples was biased by the ongoing, naturally initiated neuronal sequences. Prolonged ripples recruited new neurons that represented either arm of the maze. Long-duration hippocampal SPW-Rs replaying large parts of planned routes are critical for memory.
>> mehr lesen

Phase-only transmissive spatial light modulator based on tunable dielectric metasurface ()
Rapidly developing augmented reality, solid-state light detection and ranging (LIDAR), and holographic display technologies require spatial light modulators (SLMs) with high resolution and viewing angle to satisfy increasing customer demands. Performance of currently available SLMs is limited by their large pixel sizes on the order of several micrometers. Here, we propose a concept of tunable dielectric metasurfaces modulated by liquid crystal, which can provide abrupt phase change, thus enabling pixel-size miniaturization. We present a metasurface-based transmissive SLM, configured to generate active beam steering with >35% efficiency and a large beam deflection angle of 11°. The high resolution and steering angle obtained provide opportunities to develop the next generation of LIDAR and display technologies.
>> mehr lesen

Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO ()
Currently, the most active electrocatalysts for the conversion of CO2 to CO are gold-based nanomaterials, whereas non–precious metal catalysts have shown low to modest activity. Here, we report a catalyst of dispersed single-atom iron sites that produces CO at an overpotential as low as 80 millivolts. Partial current density reaches 94 milliamperes per square centimeter at an overpotential of 340 millivolts. Operando x-ray absorption spectroscopy revealed the active sites to be discrete Fe3+ ions, coordinated to pyrrolic nitrogen (N) atoms of the N-doped carbon support, that maintain their +3 oxidation state during electrocatalysis, probably through electronic coupling to the conductive carbon support. Electrochemical data suggest that the Fe3+ sites derive their superior activity from faster CO2 adsorption and weaker CO absorption than that of conventional Fe2+ sites.
>> mehr lesen

Mutation of a bHLH transcription factor allowed almond domestication ()
Wild almond species accumulate the bitter and toxic cyanogenic diglucoside amygdalin. Almond domestication was enabled by the selection of genotypes harboring sweet kernels. We report the completion of the almond reference genome. Map-based cloning using an F1 population segregating for kernel taste led to the identification of a 46-kilobase gene cluster encoding five basic helix-loop-helix transcription factors, bHLH1 to bHLH5. Functional characterization demonstrated that bHLH2 controls transcription of the P450 monooxygenase–encoding genes PdCYP79D16 and PdCYP71AN24, which are involved in the amygdalin biosynthetic pathway. A nonsynonymous point mutation (Leu to Phe) in the dimerization domain of bHLH2 prevents transcription of the two cytochrome P450 genes, resulting in the sweet kernel trait.
>> mehr lesen

New Products ()

>> mehr lesen

Teaching ingenuity ()

>> mehr lesen

Close Cassini flybys of Saturns ring moons Pan, Daphnis, Atlas, Pandora, and Epimetheus ()
Saturn’s main ring system is associated with a set of small moons that either are embedded within it or interact with the rings to alter their shape and composition. Five close flybys of the moons Pan, Daphnis, Atlas, Pandora, and Epimetheus were performed between December 2016 and April 2017 during the ring-grazing orbits of the Cassini mission. Data on the moons’ morphology, structure, particle environment, and composition were returned, along with images in the ultraviolet and thermal infrared. We find that the optical properties of the moons’ surfaces are determined by two competing processes: contamination by a red material formed in Saturn’s main ring system and accretion of bright icy particles or water vapor from volcanic plumes originating on the moon Enceladus.
>> mehr lesen

Measurement and implications of Saturns gravity field and ring mass ()
The interior structure of Saturn, the depth of its winds, and the mass and age of its rings constrain its formation and evolution. In the final phase of the Cassini mission, the spacecraft dived between the planet and its innermost ring, at altitudes of 2600 to 3900 kilometers above the cloud tops. During six of these crossings, a radio link with Earth was monitored to determine the gravitational field of the planet and the mass of its rings. We find that Saturn’s gravity deviates from theoretical expectations and requires differential rotation of the atmosphere extending to a depth of at least 9000 kilometers. The total mass of the rings is (1.54 ± 0.49) x 1019 kilograms (0.41 ± 0.13 times that of the moon Mimas), indicating that the rings may have formed 107 to 108 years ago.
>> mehr lesen

Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism ()
The human gut microbiota metabolizes the Parkinson’s disease medication Levodopa (l-dopa), potentially reducing drug availability and causing side effects. However, the organisms, genes, and enzymes responsible for this activity in patients and their susceptibility to inhibition by host-targeted drugs are unknown. Here, we describe an interspecies pathway for gut bacterial l-dopa metabolism. Conversion of l-dopa to dopamine by a pyridoxal phosphate-dependent tyrosine decarboxylase from Enterococcus faecalis is followed by transformation of dopamine to m-tyramine by a molybdenum-dependent dehydroxylase from Eggerthella lenta. These enzymes predict drug metabolism in complex human gut microbiotas. Although a drug that targets host aromatic amino acid decarboxylase does not prevent gut microbial l-dopa decarboxylation, we identified a compound that inhibits this activity in Parkinson’s patient microbiotas and increases l-dopa bioavailability in mice.
>> mehr lesen

A microbial factory for defensive kahalalides in a tripartite marine symbiosis ()
Chemical defense against predators is widespread in natural ecosystems. Occasionally, taxonomically distant organisms share the same defense chemical. Here, we describe an unusual tripartite marine symbiosis, in which an intracellular bacterial symbiont ("Candidatus Endobryopsis kahalalidefaciens") uses a diverse array of biosynthetic enzymes to convert simple substrates into a library of complex molecules (the kahalalides) for chemical defense of the host, the alga Bryopsis sp., against predation. The kahalalides are subsequently hijacked by a third partner, the herbivorous mollusk Elysia rufescens, and employed similarly for defense. "Ca. E. kahalalidefaciens" has lost many essential traits for free living and acts as a factory for kahalalide production. This interaction between a bacterium, an alga, and an animal highlights the importance of chemical defense in the evolution of complex symbioses.
>> mehr lesen

Comment on "Global pattern of nest predation is disrupted by climate change in shorebirds" ()
Kubelka et al. (Reports, 9 November 2018, p. 680) claim that climate change has disrupted patterns of nest predation in shorebirds. They report that predation rates have increased since the 1950s, especially in the Arctic. We describe methodological problems with their analyses and argue that there is no solid statistical support for their claims.
>> mehr lesen

Response to Comment on "Global pattern of nest predation is disrupted by climate change in shorebirds" ()
Bulla et al. dispute our main conclusion that the global pattern of nest predation is disrupted in shorebirds. We disagree with Bulla et al.’s conclusions and contest the robustness of their outcomes. We reaffirm our results that provide clear evidence that nest predation has increased significantly in shorebirds, especially in the Arctic.
>> mehr lesen